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Abstract. Stable auto-solitary solutions were found on the basis of three-dimensional numerical simulations
within the simplest model under global constraint. The model involves a diffusion equation with a nonlinear
source term containing both local and non-local nonlinearity. The source term was chosen so as to describe
qualitatively the most fundamental peculiarities of discharge physics, namely local nonlinear increase in
heating and ionization rate and non-local attenuation of electric field strength with plasma density growth.
The properties of the autosolitons created by the model have been investigated employing the different
parameters as control parameter. Therefore the results of calculations can be used to construct a process
of plasma contraction in gas discharge.

PACS. 52.35.Sb Solitons; BGK modes – 52.50.-b Plasma production and heating –
52.35.Py Plasma macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing,
trapped-particles, flute, Rayleigh-Taylor, etc.)

1 Introduction

The investigation of localized domains in dissipative sys-
tems has been marked by increasing interest over the past
two decades. There is a broad bibliography on this sub-
ject. In the monograph written by Kerner and Osipov [1]
these phenomena have been named autosolitons. Such
spotted patterns are special dissipative structures. They
occur in very different scientific disciplines such as physics,
medicine, technology, ecology, etc. (as also quotations in
Falcke [2] and Aranson et al. [3], Gorshkov et al. [4],
Deissler and Oron [5], and Yakhno [6]). The theoretical
study of autosolitons is typically based on a set of coupled
diffusion type equations with nonlinear sources (Vasillev
et al. [7]). However, as was found by Sonnemann [8,9] such
structures also appear within a special immunological sys-
tem under global constraints. The later means that a local
evolution of a considered field depends on its global (inte-
gral) quantities. In other words, the model involves a set
of integro-differential equations.

In this paper we investigate stable autosolitons oc-
curring in a simplified system under global constraint
which presents a generalized description of plasma con-
traction phenomenon in gas discharge. It should be noted
that many localized structures of different types were
revealed in gas discharge. Some of them are caused
mainly by local effects while non-local interaction is
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very important for others. Kerner and Osipov [1] stud-
ied the autosolitions of the first type and showed that
the stable structures are possible only in the case when
at least two diffusion processes are coupled due to nonlin-
ear sources. Surprisingly, as will be shown and discussed in
the following sections, the global constraint provides sta-
bility of the autosoliton if even only one of the diffusion
equations is considered.

2 General description of the physical model

The contraction phenomenon was first observed in
a positive column of glow discharge. In experiments
(Golubovskii et al. [10, 11]) plasma filled the whole cross-
section of the discharge tube for a sufficiently small value
of the discharge current, while for a higher current the
plasma is concentrated near the tube axis if the gas pres-
sure was not too small. The phenomenon was explained
by increase of ionization and gas heating rate caused by
their mutual influence. The simplest mathematical model
of this thermal contraction is based on the heat-transfer
equation with a nonlinear source (Velikhov et al. [12]):

c
∂T

∂t
= ∇(λ∇T ) + σ(T, E)E2 (1)

where T is the gas temperature, t the time, c and λ are
the specific heat capacity and the thermal conductivity of
gas, respectively, E stands for the electric field strength
which is homogeneous in the tube, and σ represents the
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electric conductivity of ionized gas increasing with growth
of T or/and E. The electric field strength depends on the
voltage across a resistance in the external circuit, i.e. it is
controlled by the total electric current J in the discharge
tube:

EL = E0L−RJ (2)

where E0 expresses the electric field strength in the ab-
sence of current, R stands for the load resistance in the
external circuit, L describes the length of the discharge
tube. The total current is determined by the integral of the
current density over the cross-section of the tube. Hence,
it is given by

J =
∫
σEds = E

∫
σds. (3)

Equations (2, 3) give us the integral dependence of E on
plasma conductivity:

E =
E0

1 + (R/L)
∫
σds
· (4)

From mathematical point of view the set of equa-
tions (1, 4) represents a simple case of nonlinear diffu-
sion equation under global constraint which suppresses a
nonlinear growth of the source.

The contraction phenomenon was also observed in
a discharge sustained inside of a quasi optic resonator
fed by microwave radiation (Kapitsa [13], Vikharev
et al. [14, 15]). In these experiments the electric field in-
tensity was not homogeneous in space due to the forma-
tion of electromagnetic standing wave structure. Therefore
the plasma did not fill the whole volume of the resonator.
Even for a small input value of microwave power (that
corresponded to the non-contracted regime of discharge),
the plasma was localized in the vicinity of the highest
maximum of the standing wave structure. In other words,
plasma occupied a region whose characteristic size cor-
responds to about the length of the standing wave, i.e.
much smaller compared to the resonator size. Neverthe-
less, if the gas pressure exceeded a definite threshold value,
an increase of the input of microwave power led to a con-
siderable decrease in plasma size which becomes much less
compared to the wavelength. In contrast to glow discharge
where the contraction is associated with the occurrence of
2D structures, a real 3D localization of plasma is observed
in microwave discharge.

In principle, in microwave discharge the process of gas
heating itself does not differ from that in glow discharge
and equation (1) can also be used for its description. The
only difference in this case is the dependence of σ on E
and T . Specifically, the increase of σ with growth of T is
characterized by saturation at a definite value of T de-
pending on gas pressure and field frequency (Kim and
Fraiman [16]). Due to the mismatch between resonator
and feeding microwave generator, there is also a specific
dependence of the electric field intensity on the integral of
σ over the volume of the resonator (Vikharev et al. [17]),
i.e. on the total number of electrons in the plasma since

the conductivity is proportional to the plasma density.
(This is a consequence of the fact that the plasma is only
weakly ionized in gas discharge.) This dependence is more
complicated compared to (4). However, a sufficiently large
value of

∮
σdτ also leads to a decrease in the field intensity.

Hence, it is possible to discuss the thermal contraction
in microwave discharge exploiting a mathematical model
similar to (1–4).

It should be mentioned that alternative physical mech-
anisms of the microwave discharge contraction are also
considered in the literature. An influence of the excita-
tion of gas molecules and the transition from the free
electron diffusion to the ambipolar diffusion were dis-
cussed (Golubovskii and Lyagushenko [10], and Egley and
Engel [18]) and local perturbation of the electric field am-
plitude were considered (Gildenburg and Kim [19]). The
role of negative ions was taken into account by Novata
and Kando [20] and Vikharev et al. [14, 15]. However, in
each case the mathematical model includes one or more
diffusion type equations with nonlinear sources depending
on electric field intensity which is determined by the inte-
gral value of unknown functions. Within such a model the
parameters of the stationary solution were calculated for
different conditions and found to be in reasonable agree-
ment with experimental results. At the same time a de-
tailed analysis of the stability of the stationary localized
structures has not been completed. Consequently, there is
no proof of the existence of the autosolitons themselves
thus far. Moreover, it is not known how many combined
nonlinear equations of diffusion type under global con-
straints are necessary to provide auto-solitary solutions.

In this paper it is shown by numerical simulations that
stable autosolitons are possible even for only one diffusion
equation. In order to get a more general model of contrac-
tion the equation (1) was modified:

∂U

∂t
= ∇(D∇U) +A[U ]Φ(U)− νU (5)

where U represents a generalized characteristic of dis-
charge (given by such quantities as gas temperature,
plasma density, concentration of excited molecules, etc.),
D stands for the effective diffusivity (diffusion coefficient)
and ν is the effective loss frequency (which equals zero
for the thermal mechanism of the contraction but differs
from zero for the alternative mechanisms). The function
Φ(U) describes the nonlinear source (heating, ionization,
excitation, etc.). The functionalA[U ] simulates the depen-
dence of the electric field intensity on the total amount of
electrons in discharge plasma. It can be expressed as a de-
creasing function of the integral of U over the volume (if
U corresponds to plasma density):

A = A0(1 +
∮
Udτ)−β , (6)

or as a decreasing function of the integral of Φ(U) over
the volume (if U corresponds to the gas temperature):

A = A0(1 +
∮
Φ(U)dτ)−β . (7)
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Here the coefficient A0 describes a power of an external
energy source (microwave generator), and the exponent β
depends on the considered physical mechanism of the con-
traction. Typically, the local source Φ(U) increases rapidly
with growth of its argument U but this increase has a ten-
dency to saturation with large values of U . In this paper
such a dependence was simulated by a function

Φ(U) =
Uα

1 + Uα
(8)

with a constant exponent α. The proposed model can only
be considered a first step to describe the localized struc-
tures of microwave discharge. It is certainly too rough
to claim any quantitative comparison with experiments.
Specifically, this model cannot describe a transition from
quasi-homogeneous regime of discharge to its contract-
ing regime when the parameters (gas pressure and mi-
crowave power) are changed. Nevertheless, there is hope
that the model could be useful in understanding the main
qualitative peculiarities of the contraction phenomenon:
the existence of stable localized structures and conditions
of their formation, namely, sufficiently high input power
(high value of A0) and sufficiently high gas pressure (low
value of diffusivity D).

3 Description of the numerical model

We use a similar three-dimensional model as described in
detail in Sonnemann [9]. It is a Cartesian co-ordinate grid-
point system consisting of 51×51×51 gridpoints. The flux
through the boundary is chosen to be zero. This is justi-
fied if the size of an autosoliton is sufficiently small com-
pared with the size of the gridpoint domain. The size of an
autosoliton can be defined, for instance, by the half-value
diameter. On the other hand, in order to minimize numer-
ical errors, the autosoliton should be large compared with
the gridpoint distance. Cartesian co-ordinates have the ad-
vantage that multiple autosolitons can be better modelled
than by spherical co-ordinates. However, in this paper we
present only results of a single autosoliton. We use ar-
bitrary units here called arbitrary units of space (AUS ),
arbitrary units of time (AUT ) and with respect to the
quantity U of equation (5) arbitrary units of U (AUU ).
The basic equation can be written as

∂U

∂t
=

AUα

(1 + Uα)
− νU +D∆U (9)

with A corresponding to (6).
The exponent α has been fixed at α = 5 for the most

numerical calculations. The prefactor A0 has also been
fixed at A0 = 1. The diffusion coefficient D, the so-named
loss frequency ν and the parameter β have been chosen as
control parameters.

It should be mentioned that the use of A0 = 1
is not connected with a loss of generality. Division of
equation (9) by A0 leads to a normalized time t∗ = A0t
and changed loss frequency ν∗ = ν/A0 and diffusion co-
efficient D∗ = D/A0. Therefore, we can investigate the

Fig. 1. Dependence of the time behaviour of inte-
gral U on the initial conditions. Parameter: D =
0.025(AUS )2(AUT)−1, ν = 0.01(AUT )−1, β = 0.5 and
α = 5.

influence of A0 on the autosolitons when considering dif-
ferent values of D and ν provided that the ratio D/ν is
kept constant.

∆ = ∂2/∂r2 represents the Laplacian with r – space
vector.

∮
Udτ stands for the total integral of U over

the whole space. We call this value also the bulk of U .
Equations (9, 6) describe a system under global constraint.

4 Results

4.1 Dependence on the initial conditions

U ≡ 0 is a stable solution. Any small perturbation p van-
ishes in the course of time because of pα � νp for α > 1.
We call U ≡ 0 the trivial homogeneous solution. The most
important quantity is the integral of U over the whole
space.

∮
Udτ ≡ 0 is valid for the trivial solution, otherwise

(excluding negative solutions as physically unreasonable)
it has a positive value. We start our computation in any
case with the trivial solution U ≡ 0 superimposed by one
(or more) differently extended parcel(s) of perturbation(s)
for which U > 0 is valid and is located in the single case
around the center (or also distributed in another way).

Figure 1 shows the time behaviour of the integral
U for 4 different initial conditions for fixed system pa-
rameters. It was D = 0.025(AUS)2(AUT )−1, β = 0.5
and ν = 0.01(AUT)−1. The computation starts with a
perturbation within the central grid points 23 to 29 for
all co-ordinates with U ≡ 6, U ≡ 0.8, U ≡ 0.72 and
U ≡ 0.71(AUU ) beginning with the uppermost curve to
the lowest one. Evidently, there is a critical initial per-
turbation for U between U = 0.71 and U = 0.72(AUU )
for which the final state changes. In the first case the so-
lution runs into a non-trivial value, in the second case
the solution approaches the trivial distribution U ≡ 0.
In the non-trivial case the upper three curves run inde-
pendently of the initial values into the same final state.
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Fig. 2. Distribution of U in the X1−X2-plane. The same pa-
rameters as in Figure 1 are used.

Fig. 3. Behaviour of U within the atmosphere of the autosoli-
ton according to Figure 2 in logarithmic scale showing the ex-
ponentially decreasing amount of U . The right scale is valid for
the right curve.

The third curve near the critical threshold for the initial
values shows a tendency to approach the trivial solution
in the first stage but finally it reaches the non-trivial so-
lution.

The critical amounts of the initial values depend
on the size of the parcels. It is important that there
are critical initial perturbations and that the final state
in the non-trivial case does not depend on the shape and
size of the initial perturbation. This is also valid for ex-
tremely shaped initial perturbations.

Figure 2 displays the distribution of U in the X1−X2-
plane in a surface plot. There is a stable localized domain
which is also called a spotted pattern or autosoliton. This
autosoliton is a spherical object with a core domain and
an atmosphere of strong decreasing values of U with in-

Fig. 4. Time behaviour of U across the X1-axis starting with
a stick-shaped initial perturbation approaching a spherical au-
tosoliton also in this extreme case. The same parameters as in
Figure 1 are used.

Fig. 5. Time behaviour of Integral U for the example depicted
in Figure 4. The final value tallys with that of Figure 1 of the
non-trivial cases.

creasing distance from the core region. The highest values
occur around the center.

Away from the center the quantity U decreases nearly
linearly within the core region. This figure also demon-
strates that the flux out of the gridpoint box would be
nearly zero even without the special boundary conditions.

Figure 3 shows the behaviour of U within the atmo-
sphere of the autosoliton. U decreases exponentially there.
The few gridpoints near the boundary are influenced by
the boundary conditions. Although U possesses only very
small values the atmosphere of an autosoliton has a very
important meaning in case of multiple autosolitons as we
will discuss elsewhere. These findings confirm results de-
rived from computations of autosolitons on the basis of a
more complex system describing immunological processes
(Sonnemann [8,9]).

In a surface plot Figure 4 depicts the time behaviour
of U across the X1-axis using a stick-shaped initial con-
dition. The initial conditions are U = 1.5(AUU ) for the
gridpoints 15 to 37 of the X1-co-ordinate and for 23 to 29
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Fig. 6. Dependence of integral U on the diffusion coefficient for different sets of the parameters ν and β.

of the other ones again. The system approaches the same
spherical autosoliton even in this extreme case.

Figure 5 displays the course of the integral U which
illustrates that, although beginning with high values of
the integral, the amount decreases below the final value
during the shrinking phase. The autosoliton approaches
a spherical shape independent of the initial perturbation
like here using the stick-shaped initial conditions.

The velocity to approach this final state depends,
above all, on the diffusion coefficient. The characteristic
diffusion time τD can be written as

τD =
H2
U

D
(10)

where HU is the space-scale of U defined by the absolute
amount of the inverse logarithmic derivative with respect
to the space:

1
HU

=
∣∣∣∣ 1
U

∂U

∂r

∣∣∣∣ · (11)

This means for very small diffusion coefficients the sys-
tem needs a very long time to reach an approximately
steady state. It is interesting to note that the scale of U is
constant within the atmosphere. Because of the discrete
gridpoint structure numerical uncertainties arise in case of
small diffusion coefficients so that we excluded the value
region D < 0.003(AUS)2(AUT )−1. Evidently, the shape
of the initial condition is preserved for a long time and
can even be numerically locked by the discrete gridpoints.

4.2 Dependence of the auto-solitary solution
on the system parameters

From a mathematical point of view (9) possesses the po-
tential to have a nontrivial stable stationary homogeneous
solution under certain conditions. For the homogeneous
solution ∂U/∂t = 0 and D∆U = 0 is valid.

However, this solution does not apply to the quasi-
homogeneous regime of gas discharge and it would be nec-
essary to use another model for this case. Consequently,
we do not consider the homogeneous solution here.

Fig. 7. Distribution of U over the X1−X2-plane for a small
diffusion coefficient of D = 0.0035(AUS )2(AUT )−1 demon-
strating the occurrence of a central plateau of the distribution
within the autosoliton.

We now investigate how the autosolitons change if we
use the system parameter D, ν and β as control param-
eter. The auto-solitary solution does not depend on the
size of the grid-point box but the numerical accuracy will
improve if the spatial resolution becomes higher. In or-
der to produce the following figures some hundred single
computations have been carried out.

Figure 6 shows the dependence on the diffusion coeffi-
cient D for certain arbitrary values of ν and β. As men-
tioned earlier, the range of very small diffusion coefficients
has been excluded. We can first recognize that there is a
linear dependence of the integral U , that is to say bulk of
the autosoliton, on the diffusion coefficient for a certain
range of values of D. The higher the diffusion coefficient
is, the smaller the bulk is. Secondly, there is a boundary of
the existence of autosolitons for large diffusion coefficients.
The exact border of the critical diffusion coefficient cannot
be determined precisely because the basin of attraction for
the auto-solitary solution shrinks to zero near the critical
diffusion coefficient. The boundary value in Figure 6 has
been determined by the step-by-step reduction of D after
reaching an auto-solitary solution and amounts about to
D = 0.03(AUS)2(AUT )−1.
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Fig. 8. Dependence of integral U on the loss frequency ν in double logarithmic scale. The same parameters as in Figure 1 are
used with the exception of ν.

Thirdly, close to the critical diffusion coefficient the lin-
ear dependence of integralU onD loses its validity. The in-
tegral decreases more strongly than linear. This behaviour
is imaginable. Figure 7 exhibits the distribution of U over
the X1−X2-plane for D = 0.0035(AUS)2(AUT )−1. The
spatial resolution was reduced by a factor of 0.5. Com-
paring this figure with Figure 2 one can see that the dis-
tribution of U within the autosoliton shows more of an
internal plateau for D = 0.0035(AUS)2(AUT )−1 than for
larger D-values. For larger amounts of D the distribution
becomes sharper and the peak value diminishes.

From Figure 6 one can derive∮
Udτ = aD + b (12)

for the range of validity of the linear dependence.
As the calculations show the parameters a and b are
functions of the system parameters ν and β, a =
a(ν, β) and b = b(ν, β). For the concrete values
of Figure 6, ν = 0.01(AUT)−1 and β = 0.5,
follows a ≈ −42750(AUU )(AUS )(AUT ) and b ≈
1990(AUU )(AUS)3. Both the lower dashed curves in Fig-
ure 6 exhibit the linear behaviour for changed parameters
within a limited range of D-values. However, the linear
expression (12) is only an approximation. The integral ap-
proaches most probably a finite value when D goes to zero.
This value can be estimated if using the approach given
in the Appendix. The extrapolation of the linear expres-
sion (12), when D goes to zero, and the estimated bulk of
the autosoliton, when using the analytical equation (A.5)
given in the Appendix, are in reasonable agreement.

Figure 8 shows the dependence of
∮
Udτ on the loss

frequency ν in double logarithmic scale. As to be expected,
the amount of the integral increases strongly with decreas-
ing loss frequency. For sufficiently small ν-values the de-
pendence is close to a power law as predicted by an analyt-

ical approach (see Appendix). However, there is the small-
est autosoliton (the boundary autosoliton) again. Close
to the boundary autosoliton the simple functional coher-
ence gets lost as the rising difference to the dashed line
indicates. The size of the autosoliton increases strongly
with decreasing ν, whereas the maximum value of U does
not considerably change. This is consistent with analytical
predictions, too.

The dependence of the bulk value on the parameter β
is still more sensitive than for the previous parameters.
As Figure 9 illustrates, the bulk value of the autosoli-
ton increases strongly with decreasing β when ν is small.
For a high β-value a boundary autosoliton occurs again.
With exception of the vicinity of the boundary autosoli-
ton, the numerical calculated dependence of

∮
Udτ on β is

not far from analytical estimations (see Appendix). With
the change of the system parameters the shape of the
autosolitons also changes. When enlarging, for instance,
the loss frequency the most striking feature is a shrink-
ing of the diameter. The smallest bulk of the autosoliton
seems to be unconfined, but only in a certain parame-
ter set where one parameter acts as a control parameter
and the remainder are fixed. Figure 10 shows the shape
of an autosoliton for a relatively small diffusion coeffi-
cient of 0.01(AUS)2(AUT )−1 but larger loss frequency
of ν = 0.1(AUT)−1. The bulk value amounts only to
9(AUU )(AUS)3.

The last parameter not considered thus far is the ex-
ponent α. It was fixed in the previous calculations to
α = 5. We now investigate what happens if α varies at
fixed values D = 0.01(AUS)2(AUT )−1, β = 0.5 and
ν = 0.01(AUT)−1. Figure 11 depicts the results. For large
values of α the increase of the bulk of the autosoliton is
only very small for further increasing α and it seemingly
approaches a final value. A minimum occurs near α = 3.
For smaller values of α the bulk values increase strongly.



G.R. Sonnemann and V.E. Semenov: Auto-solitary solutions in a generalized model of gas discharge contraction 487

Fig. 9. Dependence of integral U on the parameter β in double logarithmic scale. The same parameters as in Figure 1 are used
with the exception of β.

Fig. 10. Shape of an autosoliton across the X1-axis for a rel-
atively small diffusion coefficient of 0.01(AUS )2(AUT )−1 but
larger loss frequency ν = 0.1(AUT )−1 showing a needlelike
form. The parameter β and α as in Figure 1 are used.

Simultaneously the diameter of the autosoliton grows but
the peak value of U decreases noticeably. There seems
to be a boundary value of α for which an autosoliton can
arise. For α ≤ 1 there is apparently only the homogeneous
solution but in the vicinity of α = 1 an autosoliton-like
feature lasts very long. Figures 12 and 13 display this be-
haviour for α = 1 after very long time steps of 3000(AUT)
and 6000(AUT). Note that the scale of the X1−X2-plane
has been enlarged and the scale for U has been drastically
reduced.

Fig. 11. Dependence of the integral U on the parameter α.
The remaining parameters as in Figure 1 are used.

Fig. 12. A very long lasting autosolitonlike pattern for a = 1
after 3000(AUT ). The final state is the non-trivial homoge-
neous solution. The remaining parameters as in Figure 1 are
used but D = 0.01(AUS )2(AUT )−1.
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Fig. 13. A very long lasting autosolitonlike pattern for a = 1
after 6000(AUT ). The final state is the non-trivial homoge-
neous solution. The remaining parameters as in Figure 1 are
used but D = 0.01(AUS )2(AUT)−1.

5 Discussion

The numerical investigation of the relatively simple equa-
tion (9) being an equation under global constraint and
having only one variable U surprisingly yields results
which are very similar to those obtained by employing
a more complex system as summarized in Sonnemann [9].
Based on an immunological question a five-component
reaction-diffusion system under global constraints had
been introduced which could also create auto-solitary so-
lutions. The time behaviour of this system and its so-
lution showed common properties. This concerns such
features as a stable trivial solution (healthy), a critical
infection in order to become ill, the possibility of getting
a non-trivial homogeneous solution and, as said before,
the development of autosolitons.

Using only a two-component system consisting of an
activator and an inhibitor no auto-solitary solution oc-
curred but only a burning out within a decreasing domain.
This behaviour is not so surprising because in contrast
to equation (9) of this paper the two-component sys-
tem did not have any limiting factor. The limiting factor
of (9) which prevents an unlimited rise of U is given by
(1 + Uα)−1 corresponding to (8). Nothing in nature can
grow unlimitedly, there are always restricting factors. One
of them in immunology or also ecology is the limited food
supply in reality which confines an unlimited increase of
every species. Such limiting terms also have to include in
the two component model.

A characteristic property of autosolitons of this kind
is that they are structureless and consequently without
internal dynamics. A single autosoliton is fixed at a cer-
tain place. A movement of a single autosoliton requires an
external U -field having a certain gradient. An autosoliton
does not have a fixed border, it is actually unlimited but
one can define a size of such a localized domain using, for
example, the half-value diameter or any other definition.
Another important finding is that there is a boundary au-
tosoliton – a smallest or weakest autosoliton – for each set
of system parameters.

As initially mentioned autosolitons are a phenomenon
sometimes observed in connection with plasma contrac-
tion of gas discharge. In experiments the contraction was
observed for high pressure (i.e. low value of the ratio
D/ν) and for sufficiently high power (i.e. low value of
D provided the ratio D/ν is kept constant). Our calcula-
tions give evidence that the simplified model qualitatively
describes this behaviour.

Appendix A

Below we represent comments on a qualitative analysis of
the stationary localized solution of the time-independent
equation (5):

∇(D∇U) +A(U)Φ(U) − νU = 0 (A.1)

where

A = (1 +
∮
Udτ)−β . (A.2)

If a characteristic radius RC of an autosoliton is much
larger than the characteristic diffusion length LD =√
D/ν the autosoliton should have a flat top with U ≈ Um

where Um is the maximum root of the equation:

AΦ(U) − νU = 0. (A.3)

The bulk of the autosoliton can be estimated as
(4π/3)R3

CUm.
Figure 7 showed an example of an autosoliton marked

by a flat top.
Simultaneously the thickness of the boundary layer

is of the order of LD � RC. Therefore, the structure
of this layer can be considered by an 1D analogy of
equation (A.1). An analysis brings us to the conclusion
that the boundary layer (a jump from U ≈ Um to U ≈ 0)
is possible if and only if the following relation is valid:∫ Um

0

[AΦ(U) − νU ] dU = 0. (A.4)

A solution of equation (A.3, A.4) gives the definite values
of the ratio (ν/A) and Um which are independent of the
parameters D, ν and β. Respectively, equation (A.2) can
be used to determine the bulk

∮
Udτ of an autosoliton

and its radius RC. Specifically for α = 5, one can obtain
from (A.3, A.4) that approximately it is then

Um ≈ 2.053 and
( ν
A

)
≈ 0.474. (A.5)

Therefore, in the considered case, equation (A.2) results
in the following estimate for the bulk of the autosoliton∮

Udτ = A−1/β − 1 ∼= (0.474/ν)1/β − 1 ∼=
8π
3
R3

C. (A.6)

As mentioned, the derived results (Eqs. (A.5, A.6)) should
be corrected when LD � RC is valid. It is interesting to
note that the boundary autosolitons found in Section 4.2
are closely connected with the violation of the inequal-
ity. In particular, in all cases, the ratio (RC/LD) is esti-
mated to be about 3.4 to 3.5 for the boundary values of the
parameters ν, D and β.
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